Skip to main content

Inequalities

info

Reference textbook High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Martin J. Wainwright

Integral identity: For X to be a non-negative R.V.

EX=E01t<xdt=0E1t<xdt=0P(X>t)dtEX=E\int_0^{\infty}1_{t<x}dt=\int_0^{\infty}E1_{t<x}dt=\int_0^{\infty}P(X>t) dt

Markov's Inequality:For non-negative R.V. and t>0t>0

EX=EX1Xt+EX1xtEt1Xt=tP(Xt)EX=EX 1_{X\geq t} + EX 1_{x\leq t} \geq Et 1_{X\geq t}=t P(X \geq t)

Chebyshev's inequality: X:=Xμ2X:=|X-\mu|^2

Generalization: X:=XμkX:=|X-\mu|^k

P[Xμt]E[Xμk]tkP[|X-\mu|\geq t] \leq \frac{E[|X-\mu|^k]}{t^k}

Chernoff Bound#

Chernoff bound: X:=eλ(Xμ)X:=e^{\lambda (X-\mu)}

P[(Xμ)t]=P[eλ(Xμ)eλt]E[eλ(Xμ)]eλtlogP[(Xμ)t]infλ[0,b]{logE[eλ(Xμ)]λt}\begin{aligned} &P[(X-\mu)\geq t] =P[e^{\lambda (X-\mu)}\geq e^{\lambda t}] \leq \frac{E[e^{\lambda (X-\mu)}]}{e^{\lambda t}}\\ &\log \mathbb{P}[(X-\mu) \geq t] \leq \inf _{\lambda \in[0, b]}\left\{\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right]-\lambda t\right\} \end{aligned}

infk=0,1,2,..E[Xk]δkinfλ>0E[eλX]eλδ\inf \limits_{k=0,1,2, . .} \frac{\mathbb{E}\left[|X|^{k}\right]}{\delta^{k}} \leq \inf\limits _{\lambda>0} \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda \delta}}.

Hoeffding's inequality of Rademacher RV#

Hoeffding's inequality for n independent Rademacher R.V.s, vector aRna \in R^n and t0t \geq 0:

P{i=1naiXit}exp(t22a22)P \left\{ \sum_{ i = 1 } ^ { n } a_{ i } X_{ i } \geq t \right\} \leq \exp \left( - \frac { t ^ { 2 } } { 2 \| a \|_{ 2 } ^ { 2 } } \right)

Proof:

P{i=1NaiXit}=P{exp(λi=1NaiXi)exp(λt)}eλtEexp(λi=1NaiXi)=eλti=1NEexp(λaiXi)\begin{aligned} \mathbb { P } \left\{ \sum_{ i = 1 } ^ { N } a_{ i } X_{ i } \geq t \right\} & = \mathbb { P } \left\{ \exp \left( \lambda \sum_{ i = 1 } ^ { N } a_{ i } X_{ i } \right) \geq \exp ( \lambda t ) \right\} \\ & \leq e ^ { - \lambda t } \mathbb { E } \exp \left( \lambda \sum_{ i = 1 } ^ { N } a_{ i } X_{ i } \right)\\ & = e ^ { - \lambda t } \prod_{ i = 1 } ^ { N } \mathbb { E } \exp \left( \lambda a_{ i } X_{ i } \right) \end{aligned}

For Eexp(λaiXi)=exp(λai)+exp(λai)2=cosh(λai)\mathbb { E } \exp \left( \lambda a_{ i } X_{ i } \right) = \frac { \exp \left( \lambda a_{ i } \right) + \exp \left( - \lambda a_{ i } \right) } { 2 } = \cosh \left( \lambda a_{ i } \right) and cosh(x)exp(x2/2) for all xR\cosh ( x ) \leq \exp \left( x ^ { 2 } / 2 \right) \quad \text { for all } x \in \mathbb { R }

P{i=1NaiXit}eλti=1Nexp(λ2ai2/2)=exp(λt+λ22i=1Nai2)=exp(λt+λ22)( make λ=t)\begin{aligned} \mathbb { P } \left\{ \sum_{ i = 1 } ^ { N } a_{ i } X_{ i } \geq t \right\} \leq e ^ { - \lambda t } \prod_{ i = 1 } ^ { N } \exp \left( \lambda ^ { 2 } a_{ i } ^ { 2 } / 2 \right) & = \exp \left( - \lambda t + \frac { \lambda ^ { 2 } } { 2 } \sum_{ i = 1 } ^ { N } a_{ i } ^ { 2 } \right) \\ & = \exp \left( - \lambda t + \frac { \lambda ^ { 2 } } { 2 } \right) (\text{ make }\lambda = t) \end{aligned}

Chernoff's inequality for sum of Bernoulli rv#

P{SNt}eμ(eμt)t\mathbb { P } \left\{ S _ { N } \geq t \right\} \leq e ^ { - \mu } \left( \frac { e \mu } { t } \right) ^ { t }